Setting a marked price for a property

Key Stage:		3				
Strand:		Number an	nd Algebra Strand			
Learning Unit:		Formulae				
		Linear equa	ations in two unknowns			
		Inquiry and	d investigation			
Objectives:	(i)	To enrich s	students' experience in applying linear equations in two			
		unknowns	and their graphs in real-world scenarios			
	(ii)	To enhance	e students' abilities in identifying variables required and			
		making ass	sumptions in modelling			
	(iii)	To learn th	ne use of information technology (IT) in the process of			
		mathematic	cal modelling			
Prerequisite]	Knov	v ledge: (i	i) Using substitution to find the values of unknowns in the formulae			
		(i	ii) Understanding the concept of linear equations in two unknowns and their graphs			
Resources Re	equiro	ed:	Desktop or tablet computers with MS Excel and Internet connection			

Background Information:

Real estate pricing is a complex domain that involves various factors influencing the value of a property. Mathematical modelling offers a useful tool to understand and estimate property prices, providing valuable insights to potential buyers, sellers, and real estate professionals. The main goal of the following modelling activities is to enrich students' understanding and practical application of linear equations in two unknowns, alongside their graphical representations.

Rooted in empirical modelling, this set of activities guide students to transform data into a navigational tool for making informed decisions regarding the pricing of a property. With the aid of information technology, students gain the competence to formulate models without being limited by the lack of advanced mathematics and statistics knowledge. As students delve into modelling, they explore numerical estimations and engage in discussions about variables, assumptions, and limitations of models.

Description of the Activities:

There are three main activities in this resource package:

- Activity 1: To recall prerequisite knowledge (1A) and to plot graphs and formulate models using MS Excel (1B).
- Activity 2: To use data of marked prices of properties alongside their corresponding floor areas to formulate a model.
- Activity 3: To use data of marked prices of properties alongside their corresponding ages of buildings to formulate a model.

Based on Yong et al.'s (2015) framework of the mathematical modelling process, the following table summarises the elements that teachers can discuss with students in the corresponding questions.

Phase	Elements	WS1A	WS1B	WS2	WS3
Define	Define the question of interest	Cover Page			
	Identify variables and parameters	1(a)		1	1
Translate	Identify governing principles	1(a)	2, 4, 6	2	1
	Make simplifying assumptions		9	7	6
	Formulate mathematical model	1(a)	2, 4, 7	4	3
Analyse	Select appropriate math tools &	1(a)	3, 5, 7, 8	3–5	2–4
	Solve mathematical problem				
	Determine or estimate parameters		3, 7	4	3
	Validate solution			6	5
Interpret	Visualise solution	1(b)	3, 7	4	3
	Draw appropriate conclusions &	1(a)	5, 8	5,6	4
	Communicate results				

Activity 1A (refer to Worksheet 1)

The aim of this activity is to recall students' prerequisite knowledge of using substitution to find the values of unknowns in the formulae (Question 1(a)) and the concept of linear equations in two unknowns and their graphs (Question 1(b)).

Pedagogical recommendations:

- 1. The teacher can arouse students' interest by discussing the use of formulae in realworld scenarios. Question 1(a) involves a linear equation in two unknowns. The equation can calculate the cost of printing booklets. In Question 1(b), students are tasked to draw the graph of a linear equation in two unknowns. Notice that the slope of the straight line is positive. Therefore, the teacher may discuss the following observation with students.
 - The greater the value of *x*, the greater the value of *y*. This will be useful when discussing the relationship between the floor areas and the marked prices of properties in Activity 2.

Suggested solution:

(a) Put x = 50 into the equation.

$$y = 5(50) + 100$$

= 350

 \therefore The cost of printing 50 booklets is \$350.

(b)
$$y = 5x + 100$$

x	10	20	30
у	150	200	250

Activity 1B (refer to Worksheet 1)

The aims of this activity are to recall students' skills of using spreadsheets and to introduce the IT skills of using MS Excel in formulating models.

Pedagogical recommendations:

- 2. Based on the scenario in Question 1(a), the teacher can introduce students to the concept of a model. Specifically, y = 5x+100 can be regarded as a model that describes the relationship between the number of booklets to print and the cost required.
- 3. The teacher should emphasise that such a calculation is possible because we are given the equation (i.e., the model). In reality, we may not have a model at the very beginning, or we have to formulate a model based on our observation. Therefore, the teacher can introduce students to the IT skills of using MS Excel in formulating models. The teacher can use the step-by-step instructions in Worksheet 1 to guide students in formulating a model that describes the relationship between the number of booklets to print and the time required.
- 4. Based on the given data, y = 1.5x + 5 is a model that describes the relationship between the number of booklets to print and the time required.
- 5. Question 5 allows students to apply their formulated model to estimate the time required to print certain number of booklets. Through this application, the teacher can emphasise the usefulness of mathematical modelling.

Suggested solution:

Put x = 80 into y = 1.5x + 5. y = 1.5(80) + 5= 125

- ... The time required to print 80 booklets is estimated at 125 minutes.
- 6. Notice that the data points provided lie on a straight line. The teacher should emphasise that in reality, it is not always possible to find a straight line that passes through all data points. However, although there are some deviations from a straight line, we can still observe a general trend. For example, the *more* booklets we print, the *more* time is required. For more capable students, the teacher may consider discussing the graphs in 2013 HKDSE Mathematics (Compulsory Part) Paper 2 Question 28 and 2008 HKCEE Mathematics Paper 2 Question 36.

Hence, the teacher can introduce students to the concept of lines of best fit. That is a line that minimises the distance between the line and data points. If students have a strong interest in mathematics and statistics, the teacher may mention the term "regression lines." For junior secondary school students, however, teachers are advised to focus more on the use of IT in the modelling process and the application of modelling outcomes.

7. Question 7 requires students to apply their skills learnt (in Question 3) in plotting a graph and formulating a model based on given data. This serves as a formative assessment for the teacher to evaluate students' mastery of the IT skills required in Activities 2 and 3.

Suggested solution:

 \therefore The model is y = 1.53x + 4.5.

8. Similar to Question 5, Question 8 allows students to apply their formulated model to estimate the time required to print certain number of booklets. Although we cannot find a straight line that passes through all the data points, the line of best fit can help our estimation. Through this application, the teacher can emphasise again the usefulness of mathematical modelling.

Suggested solution:

Put x = 80 into y = 1.53x + 4.5. y = 1.53(80) + 4.5

- ... The time required to print 80 booklets is estimated at 127 minutes.
- 9. Toward the end of Activity 1, the teacher can facilitate the discussion on the assumptions and limitations of the formulated model. This can enhance students' abilities in making assumptions and identifying limitations in modelling. The following are some possible discussion outcomes.
 - Assumptions:
 - 1. Linear relationship: The model assumes that the relationship between the number of booklets and the time required is linear. In reality, this may not always be the case, especially for the printing of a large number of booklets, machine limitations or operator fatigue may slow down the speed.
 - 2. No other factors: The model assumes that there are no other factors influencing the time required to print booklets other than the number of booklets itself. This might not hold true in practical situations where other variables, such as machine efficiency, operator experience, and varying workload, can affect the time needed.
 - Limitations:
 - 1. Oversimplification: This model oversimplifies the printing process by considering only one factor (i.e., the number of booklets). Printing can be a complex process influenced by many variables, including paper quality and thickness of booklets, which this model does not consider.
 - 2. Dependence on a small amount of data: The model is formulated based on only 4 records. Any changes in the printing process, technology, and other relevant factors could make the model less accurate or outdated. A longer period of observation is necessary to collect more data.

Activity 2 (refer to Worksheet 2)

The aim of this activity is to enrich students' modelling experiences by using real data to formulate an empirical model. Students will use marked prices of properties alongside their corresponding floor areas to formulate the model. Worksheet 2 exemplifies how the data can be used and a possible instructional design of guiding students in modelling. To enhance relevance to their daily life, the teacher may ask students to collect data of the marked prices of properties near the school before class. The modelling activities can thus be based on the data collected.

Pedagogical recommendations:

- 1. The teacher can arouse students' interest by discussing the information that is needed when setting a marked price for a property. This can enhance students' abilities in identifying variables required in modelling. The following are some possible discussion outcomes.
 - Size and layout: Floor area, number of rooms, bathrooms, and kitchens.
 - Condition: New, renovated, or need for refurbishment.
 - Property type: Private housing estate, public housing estate, or village house.
 - Facilities: Swimming pool, gym room, and parking.
 - Location: Proximity to transportation, schools, shopping centres.
- 2. The teacher shows some real data of the marked prices of some properties and their corresponding floor areas. Although the ads in the figure of Question 2 are commonly seen in Hong Kong, the teacher should check students' understanding of the values involved. For example, some students may not know how to convert "498 萬" to 4,980,000.

The teacher can discuss the general relationship between the floor areas and the marked prices of properties. Specifically, the *larger* the floor area, the <u>higher</u> the marked price of the property.

3. The teacher then asks students to input the data to MS Excel. To avoid confusion, the teacher can recommend students to input the floor areas and the marked prices in Column A and Column B, respectively.

4. Students use the skills learnt in Activity 1B to plot a graph and formulate a model (Model A) that describes the relationship between the floor areas (x) and the marked price of properties (y). The teacher can point out that the resulting graph matches with the general relationship discussed in Question 2.

Suggested solution:

: The model is y = 0.6026x + 298.11.

5. Question 5 allows students to apply their formulated model to suggest a marked price for a property. Through this application, the teacher can emphasise the usefulness of mathematical modelling in real estate pricing.

Suggested solution:

Put x = 420 into y = 0.6026x + 298.11. y = 0.6026(420) + 298.11= 551.202

- \therefore The marked price for the property can be \$5,510,000.
- 6. Students are prompted to evaluate the modelling outcome by comparing it with the actual marked price. This is a crucial step that not only aids in evaluating the model but also helps students relate the mathematical world to the real world.

Any discrepancies between the suggested marked prices and the actual marked prices can reveal the needs of refining the model. For example, if the model consistently overestimates or underestimates the marked prices, adjustments to the model must be made to improve its accuracy. <u>Suggested solution:</u> Absolute error = $(580-551) \times 10,000$ = \$290,000Percentage error = $\frac{290,000}{5,800,000} \times 100\%$ = 5%

Our suggested marked price is about 5% lower than the actual marked price. The owner may think that other factors, such as the scenic view and recent renovation of the property, have enhanced its value.

- 7. Toward the end of Activity 2, the teacher can facilitate the discussion on the assumptions and limitations of the formulated model. This can enhance students' abilities in making assumptions and identifying limitations in modelling. The following are some possible discussion outcomes.
 - Assumptions:
 - 1. Linear relationship: The model assumes that the relationship between the floor areas and the marked prices of properties is linear. In reality, this may not always be the case. In the real estate market, the price per square feet may grow exponentially as the floor area of properties increases.
 - 2. No other factors: The model assumes that the marked price is solely influenced by the floor area. This might not hold true in practical situations where other factors, as discussed in Question 1, can affect the pricing.
 - Limitations:
 - 1. Oversimplification: The model oversimplifies the relationship between the floor areas and the marked prices of properties. In reality, the pricing of a property is influenced by a multitude of factors beyond just floor area, such as location, property condition, market demand, amenities, and economic conditions.
 - 2. Dependence on a small amount of data: The model is formulated based on the marked prices of only 9 properties, which may not accurately represent the entire range of properties in the market. A more comprehensive dataset is necessary.

Activity 3 (refer to Worksheet 3)

Following Activity 2, the aim of this activity is to further enrich students' modelling experiences by using real data to formulate an empirical model. Students will use marked prices of properties alongside their corresponding ages of buildings to formulate the model. Worksheet 3 exemplifies how the data can be used and a possible instructional design of guiding students in modelling. If students undertake data collection for this activity, they have to find out the year of completion of the buildings included in their dataset. The teacher may recommend students to search for relevant information on the Internet while emphasising the importance of critical thinking on the credibility of their information sources.

Pedagogical recommendations:

1. The teacher can arouse students' interest by discussing another factor that may affect real estate pricing, namely the age of its building. The teacher shows some real data of the marked prices of some properties and the corresponding years of completion of their buildings.

The teacher can discuss the general relationship between the ages of buildings and the marked prices of properties. Specifically, the *greater* the age of the building, the *lower* the marked price of the property. This applies the concept of depreciation in the learning unit of "Using percentages."

- 2. With the experiences in Activity 2, students should be able to input the data to MS Excel. However, the teacher should check whether they are able to obtain the ages of buildings from their years of completion. To avoid confusion, the teacher can recommend students to input the ages of buildings and the marked prices in Column A and Column B, respectively.
- 3. Students use the skills learnt in Activity 1B to plot a graph and formulate a model (Model B) that describes the relationship between the ages of buildings (*x*) and the marked prices of properties (*y*). The teacher can point out that the resulting graph matches with the general relationship discussed in Question 1.

Suggested solution:

: The model is y = -6.5156x + 718.51.

- 4. Question 4 allows students to apply their formulated model to suggest a marked price for a property. <u>Suggested solution:</u> The age of the building = 2023-1985= 38Put x = 38 into y = -6.5156x+718.51. y = -6.5156(38)+718.51
 - = 470.9172
 - \therefore The marked price for the property can be \$4,710,000.
- 5. With the suggested marked prices of Model A and Model B, students are given the opportunity to compare different models. For Model A, there is a difference of \$290,000. But for Model B, there is a difference of \$1,090,000. In this case, the suggested marked price of Model A is closer to the actual marked price than that of Model B. The following is a possible implication.
 - Compared with the floor area, the age of a building may be less influential on the marked price of a property.

- 6. Similar to Activity 2, the teacher can facilitate the discussion on the assumptions and limitations of the formulated model. With the experiences in Activity 2, students should be more able to identify the assumptions made and limitations in modelling. The following are some possible discussion outcomes which are similar to those in Question 7 of Activity 2.
 - Assumptions:
 - 1. Linear relationship: The model assumes that the relationship between the ages of buildings and the marked price of properties is linear.
 - 2. No other factors: The model assumes that the marked price is solely influenced by the ages of buildings. However, at least one important factor, namely floor areas, has not been considered.
 - Limitations:
 - 1. Oversimplification: The model oversimplifies the relationship between the ages of buildings and the marked prices of properties.
 - 2. Dependence on a small amount of data: The model is formulated based on the marked prices of only 9 properties, which may not accurately represent the entire range of properties in the market.

Concluding remarks:

In Activities 2 and 3, students used MS Excel to formulate the lines of best fit based on some real data. These lines are useful to express the relationship of different data points. However, both Activities 2 and 3 only consider one factor (the floor area; the age of a building) when formulating the model.

To construct a model involving two or more factors, the teacher can consider introducing students to the use of free online statistical applications, such as: https://stats.blue/Stats_Suite/multiple_linear_regression_calculator.html https://www.socscistatistics.com/tests/multiple_linear_regression_calculator.html

As an enrichment activity, students may use the data of the above activities to formulate a model.

However, it is worth noting that a small amount of data is involved in the above activities. Besides, there are many other factors that affect how property owners set their marked price. Therefore, we have to collect more data as well as continue to refine our model by considering more factors.

Reference:

Yong, D., Levy, R., & Lape, N. (2015). Why no difference? A controlled flipped classroom study for an introductory differential equations course. *PRIMUS*, *25*(9–10), 907–921.

Suggested lesson plans and teaching flow

Time	Objectives		eaching activities and processes	Resources /
(mins)				remarks
10	• To arouse	1.	The teacher arouses students'	WS cover
	students' interest		interest by discussing the real-	page
			world scenario.	
	• To recall	2.	The teacher uses an example as a	WS1AQ1
	prerequisite		warm-up exercise to recall	
	knowledge		students' knowledge of using	
			substitution to find the values of	
			unknowns in the formulae.	
		3.	The teacher uses an example as a	
			warm-up exercise to recall	
			students' concept of linear	
			equations in two unknowns and	
			their graphs.	
25	• To introduce the	1.	The teacher introduces students	WS1B Q2
	concept of a		to the concept of a model. For	
	model		example, the equation	
			y = 5x + 100 can be regarded as	
			a model that describes the	
			relationship between the number	
			of booklets to print and the cost	
			required.	
	• To recall the IT	2.	The teacher asks students to input	WS1B Q3-4
	skills of using		data to MS Excel to recall their	
	spreadsheets		skills of using spreadsheets.	
	• To introduce the	3.	The teacher introduces students	
	IT skills of using		to the IT skills of using MS Excel	
	MS Excel in		in formulating models.	
	formulating			
	models			
	• To apply	4.	The teacher asks students to	WS1B Q5
	modelling		apply their modelling outcomes	
	outcomes		in estimation.	

Teaching time: 70 minutes or a double lesson

Time	Objectives	Teaching activities and processes	Resources /
(mins)			remarks
	• To introduce the	5. The teacher emphasises that in	WS1B Q6
	concept of lines	reality, it is not always possible	
	of best fit	to find a straight line that passes	
		through all data points. However,	
		we can still observe a general	
		trend. The following two	
		questions can be showcased.	
		2013 HKDSE Math Paper 2	
		Q28	
		2008 HKCEE Math Paper 2	
		Q36	
		6. The teacher thus introduces the	
		concept of lines of best fit.	
	• To reinforce the	7. The teacher asks students to	WS1B Q7
	IT skills of using	apply their stills learnt in plotting	
	MS Excel in	a graph and formulating a model	
	formulating	based on given data.	
	models	8. The teacher evaluates students'	
		mastery of the IT skills.	
	• To apply	9. The teacher asks students to	WS1B Q8
	modelling	apply their modelling outcomes	
	outcomes	in estimation.	
	• To enhance	10. Students discuss in groups the	WS1B Q9
	abilities in	assumptions and limitations of	
	making	the formulated model. The	
	assumptions and	teacher may ask the following	
	identify	questions to stimulate thinking:	
	limitations in	Is the relationship always linear?	
	modelling	Are there other factors that we	
		have not considered? Are the data	
		adequate to formulate the model?	

Time	Objectives	Teaching activities and processes	Resources /
(mins)			remarks
20	• To enhance	1. Students discuss in groups the	WS2 Q1
	abilities in	information needed when setting	
	identifying	a marked price for a property.	
	variables	The teacher may ask students to	
		consider the following aspects to	
		facilitate discussion: Size and	
		layout, condition, property type,	
		facilities, and location.	
	• To formulate an	2. By showing some real data, the	WS2 Q2–4
	empirical model	teacher discusses the general	
	using real data	relationship between the floor	
		areas and the marked prices of	
		properties.	
		3. The teacher asks students to input	
		the data to MS Excel and	
		formulate the model (Model A).	
	• To apply	4. The teacher asks students to	WS2 Q5
	modelling	apply their modelling outcomes	
	outcomes	to propose a suggested marked	
		price.	
	• To evaluate the	5. The teacher asks students to	WS2 Q6
	model	evaluate the modelling outcome	
		by comparing it with the real	
		data.	
		6. Students discuss in groups the	
		possible reasons of the difference	
		between the actual marked price	
		and the suggestion based on the	
		model. The teacher may ask the	
		following question to stimulate	
		thinking: Why does the owner	
		believe that the property merits a	
		higher price?	

Time	Objectives		eaching activities and processes	Resources /
(mins)				remarks
	• To enhance	7.	Students discuss in groups the	WS2 Q7
	abilities in		assumptions and limitations of	
	making		the formulated model. The	
	assumptions and		teacher may ask the following	
	identify		questions to stimulate thinking:	
	limitations in		Is the relationship always linear?	
	modelling		Are there other factors that we	
			have not considered? Are the data	
			adequate to formulate the model?	
10	• To formulate an	1.	By showing some real data, the	WS3 Q1–3
	empirical model		teacher discusses the general	
	using real data		relationship between the ages of	
			buildings and the marked prices	
			of properties.	
		2.	The teacher asks students to input	
			the data to MS Excel and	
			formulate the model (Model B).	
	• To apply	3.	The teacher asks students to	WS3 Q4
	modelling		apply their modelling outcomes	
	outcomes		to provide suggestion.	
	• To evaluate the	4.	The teacher asks students to	WS3 Q5
	model		evaluate the modelling outcome	
			by comparing it with the real	
			data.	
		5.	The teacher then asks students to	
			compare different models.	
			Students discuss in groups the	
			implication of their observation.	
			The teacher may ask the	
			following questions to stimulate	
			thinking: Which model can	
			suggest a marked price which is	
			closer to the actual marked price?	
			What factor is more influential	
			on the marked price?	

Time	Objectives	Γ	eaching activities and processes	Resources /
(mins)				remarks
	• To enhance	6.	Students discuss in groups the	WS3 Q6
	abilities in		assumptions and limitations of	
	making		the formulated model. The	
	assumptions and		teacher may ask the following	
	identify		questions to stimulate thinking:	
	limitations in		Is the relationship always linear?	
	modelling		Are there other factors that we	
			have not considered? Are the data	
			adequate to formulate the model?	
5	• To conclude the	1.	The teacher recalls the concept of	
	activity		a model and the use of MS Excel	
			in formulating models.	
		2.	The teacher emphasises the	
			usefulness of mathematical	
			modelling in real estate pricing as	
			well as other disciplines.	
		3.	The teacher acknowledges the	
			needs of making assumptions	
			when formulating the models,	
			and thus the limitations of the	
			models.	
		4.	The teacher suggests students'	
			further investigation of	
			constructing a model involving	
			two or more factors using free	
			online statistical applications.	